Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry.

نویسندگان

  • Martin Wolf
  • Ursula Wolf
  • Jee H Choi
  • Vladislav Toronov
  • L Adelina Paunescu
  • Antonios Michalos
  • Enrico Gratton
چکیده

Brain activity is associated with physiological changes, which alter the optical properties of the tissue in the near-infrared part of the spectrum. Two major types of optical signals following functional brain activation can be distinguished: a slow signal due to hemodynamic changes and a fast signal, which is directly related to neuronal activity. The fast signal is small and therefore difficult to detect. We used a specially noise-optimized frequency-domain near-infrared spectrometer with a pi-sensor, which was expected to be particularly sensitive to deeper tissue layers, to investigate the human visual cortex during visual stimulation generated by a checkerboard. We were able to detect significant fast signals in single light bundles, but not in pi-signals. The fast signals were mostly collocated with strong slow hemodynamic signals, but showed a higher degree of localization than the latter. The latencies of 40 +/- 16 ms of the fast signals were similar between locations. Our results also indicate that the brain responds differently to a single and double (forth and back) reversal of the checkerboard, with a stronger reaction upon the double reversal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Correlation of functional and resting state connectivity of cerebral oxy-, deoxy-, and total hemoglobin concentration changes measured by near-infrared spectrophotometry.

The aim is to study cerebral vascular functional connectivity during motor tasks and resting state using multichannel frequency-domain near-infrared spectrophotometry. Maps of 5.7 × 10.8 cm size displaying changes in cerebral oxyhemoglobin (O(2)Hb), deoxyhemoglobin (HHb), and total hemoglobin (tHb) concentrations were measured in the motor cortex in 12 subjects (mean age of 28.8±12.7 yrs) durin...

متن کامل

Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex.

Millisecond changes in the optical properties of the human brain during stimulation were detected in five volunteers using noninvasive frequency-domain near-infrared spectroscopy. During a motor stimulation task we found highly significant signals, which were directly related to neuronal activity and exhibited much more localized patterns than the slow hemodynamic signals that are also detected...

متن کامل

Activation detection in functional near-infrared spectroscopy by wavelet coherence.

Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychophysiology

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2003